Coupling of retinal isomerization to the activation of rhodopsin.

نویسندگان

  • Ashish B Patel
  • Evan Crocker
  • Markus Eilers
  • Amiram Hirshfeld
  • Mordechai Sheves
  • Steven O Smith
چکیده

Activation of the visual pigment rhodopsin is caused by 11-cis to -trans isomerization of its retinal chromophore. High-resolution solid-state NMR measurements on both rhodopsin and the metarhodopsin II intermediate show how retinal isomerization disrupts helix interactions that lock the receptor off in the dark. We made 2D dipolar-assisted rotational resonance NMR measurements between (13)C-labels on the retinal chromophore and specific (13)C-labels on tyrosine, glycine, serine, and threonine in the retinal binding site of rhodopsin. The essential aspects of the isomerization trajectory are a large rotation of the C20 methyl group toward extracellular loop 2 and a 4- to 5-A translation of the retinal chromophore toward transmembrane helix 5. The retinal-protein contacts observed in the active metarhodopsin II intermediate suggest a general activation mechanism for class A G protein-coupled receptors involving coupled motion of transmembrane helices 5, 6, and 7.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Origin of the low thermal isomerization rate of rhodopsin chromophore

Low dark noise is a prerequisite for rod cells, which mediate our dim-light vision. The low dark noise is achieved by the extremely stable character of the rod visual pigment, rhodopsin, which evolved from less stable cone visual pigments. We have developed a biochemical method to quickly evaluate the thermal activation rate of visual pigments. Using an isomerization locked chromophore, we conf...

متن کامل

Mechanism of rhodopsin activation as examined with ring-constrained retinal analogs and the crystal structure of the ground state protein.

The guanine nucleotide-binding protein (G-protein)-coupled receptor superfamily (GPCR) is comprised of a large group of membrane proteins involved in a wide range of physiological signaling processes. The functional switch from a quiescent to an active conformation is at the heart of GPCR action. The GPCR rhodopsin has been studied extensively because of its key role in scotopic vision. The gro...

متن کامل

Adaptation of cone pigments found in green rods for scotopic vision through a single amino acid mutation.

Most vertebrate retinas contain a single type of rod for scotopic vision and multiple types of cones for photopic and color vision. The retinas of certain amphibian species uniquely contain two types of rods: red rods, which express rhodopsin, and green rods, which express a blue-sensitive cone pigment (M1/SWS2 group). Spontaneous activation of rhodopsin induced by thermal isomerization of the ...

متن کامل

Structure and activation of the visual pigment rhodopsin.

Rhodopsin is a specialized G protein-coupled receptor (GPCR) found in vertebrate rod cells. Absorption of light by its 11-cis retinal chromophore leads to rapid photochemical isomerization and receptor activation. Recent results from protein crystallography and NMR spectroscopy show how structural changes on the extracellular side of rhodopsin induced by retinal isomerization are coupled to the...

متن کامل

Retinal orientation and interactions in rhodopsin reveal a two-stage trigger mechanism for activation

The 11-cis retinal chromophore is tightly packed within the interior of the visual receptor rhodopsin and isomerizes to the all-trans configuration following absorption of light. The mechanism by which this isomerization event drives the outward rotation of transmembrane helix H6, a hallmark of activated G protein-coupled receptors, is not well established. To address this question, we use soli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 101 27  شماره 

صفحات  -

تاریخ انتشار 2004